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Note

Normalization of projected spin eigenfunctions
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We find the normalization integral for projected spin eigenfunctions, defined by means of
character projection operators of the symmetric group. We also obtain a reduced expression
for these spin eigenfunctions.

1. Introduction and definitions

Compact expressions have recently been presented [4] for evaluating electronic
matrix elements between wavefunctions based on projected spin eigenfunctions. Pro-
jected spin eigenfunctions were first introduced by Löwdin [10] and have been de-
veloped further by various authors [13]. Such N -electron spin eigenfunctions of Ŝ2

and Ŝz , with quantum numbers S and M , respectively, are neither orthogonal nor
normalized, and one obstacle to their further use, including the formulation presented
in [4], is the lack of an explicit expression for the normalization integral. The main
purpose of the present note is to obtain such an expression.

For the high-spin case (M = S) Kramer [8] has shown that Löwdin’s projection
operator [10] is equivalent to the character projection operator

X̂ [λ] =
fNS
N !

∑
P∈SN

X [λ](P )P̂ , (1)

in which [λ] = [N/2 + S,N/2 − S] ≡ [nα,nβ] labels an irreducible representation
of the symmetric group SN . X [λ](P ) is the character of the permutation P in the
representation, and (for any value of M ) fNS is the dimension of the spin space for
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the given values of N and S:

fNS =
(2S + 1)N !

(N/2 + S + 1)!(N/2 − S)!
. (2)

The question of what set of primitive eigenfunctions of Ŝz to start from, in order
to obtain a complete set of fNS N -electron spin eigenfunctions, was first addressed
by Löwdin [11]. He suggested that all simple spin products that can be associated
with a standard Young tableau lead to a complete linearly independent set, as was
subsequently proved by Gershgorn [6] and Pauncz [12]. Let the first primitive spin
function θ1 be

θ1 = α(1)α(2) · · · α(nα)β(nα + 1) · · · β(nα + nβ), (3)

which can be associated with the tableau

. (4)T1 =
nα + 1

1 2 · · · · · · nα
· · · nα + nβ

When the standard Young tableaux associated with spin eigenfunctions are ordered in
last letter sequence (see, for example, [15]), P̂k is defined as the permutation operator
that converts the first tableau T1 into the kth tableau Tk:

P̂kT1 = Tk. (5)

In the following, we call these permutations standard Young tableaux permutations. It
means that we can write the kth simple spin product as

θk = P̂kθ1. (6)

A complete linearly independent set of projected spin eigenfunctions is therefore

Θk = X̂ [λ]P̂kθ1 = P̂kX̂ [λ]θ1, k = 1, 2, . . . , fNS . (7)

The character operator X̂ [λ] commutes with any P̂k since it belongs to the centrum of
the group algebra [14].

2. Normalization of the spin eigenfunctions

In order to determine the normalization constant for the character projected spin
eigenfunctions we evaluate 〈Θk|Θk〉 by inserting the expression in equation (7) and
moving all operators in the bra over to the ket

〈Θk|Θk〉 =
〈
θ1
∣∣(X̂ [λ])†(P̂k)†P̂kX̂ [λ]θ1

〉
. (8)

Utilizing that (X̂ [λ])† = X̂ [λ] and (P̂k)† = P̂−1
k we obtain

〈Θk|Θk〉 =
〈
θ1
∣∣(X̂ [λ])2

θ1
〉
. (9)



B. Friis-Jensen et al. / Normalization of spin eigenfunctions 251

The character operator is idempotent, and so

〈Θk|Θk〉 =
fNS
N !

∑
P∈SN

X [λ](P )
〈
θ1
∣∣P̂ θ1

〉
. (10)

We note that the spin strings in the bra and ket must have matching α and β functions
in order for the integral to be non-zero. In the following, Snα denotes the symmetric
group which permutes the numbers 1, 2, . . . ,nα, and Snβ the group acting on the
numbers nα + 1, . . . ,nα + nβ . Application of a permutation from the direct product
group [7], Snα ⊗ Snβ , to the first spin string θ1 in equation (3) leaves the spin string
unchanged:

P̂ θ1 = θ1, for P ∈ Snα ⊗ Snβ . (11)

Accordingly, we get

〈Θk|Θk〉 =
fNS
N !

∑
P∈Snα⊗Snβ

X [λ](P ). (12)

In order to evaluate the sum over irreducible characters of [λ] we look at the irreducible
representation [λ] restricted to Snα ⊗ Snβ . The subduced representation [λ]↓(Snα ⊗
Snβ ) will in general be reducible. Let us express it as a sum over all irreducible
representations of Snα ⊗ Snβ :

[λ]↓(Snα ⊗ Snβ ) =
∑
[µ]

aµ[µ], (13)

where [µ] is of the form [λα]⊗ [λβ] and [λα] is an irreducible representation of Snα
and [λβ] is an irreducible representation of Snβ (see, for example, [3]). When the
individual representations are irreducible, the product must be as well. The irreducible
product character X [µ] can be expressed in terms of the individual characters:

X [µ](P ) = X [λα](Pα)X [λβ ](Pβ), (14)

where Pα ∈ Snα , Pβ ∈ Snβ and P = PαPβ . The subduced character X [λ]↓ is therefore∑
P∈Snα⊗Snβ

X [λ]↓(P ) =
∑

[λα],[λβ]

aλαλβ

( ∑
Pα∈Snα

X [λα](Pα)

)

×
( ∑
Pβ∈Snβ

X [λβ ](Pβ)

)
. (15)

Let us multiply each term in the Snα summation by X [nα](Pα) = 1 so that we obtain∑
Pα∈Snα

X [λα](Pα)X [nα](Pα) = δ[λα],[nα]nα!, (16)
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in which we have used the orthogonality of the irreducible characters of Snα (see, for
example, [1]). Utilizing the same procedure for Snβ , we obtain∑

P∈Snα⊗Snβ

X [λ]↓(P ) = anαnβnα!nβ!. (17)

In order to determine the coefficient anαnβ we use the Frobenius reciprocity theo-
rem [2,5], which was originally expressed in terms of characters of representations,
although later formulations also concern representations. Since SN is a group with an
irreducible representation [λ] = [nα,nβ] and Snα ⊗ Snβ is a subgroup of SN with an
irreducible representation [nα]⊗ [nβ], we have:

The frequency of [λ] in the induced representation ([nα] ⊗ [nβ])↑SN is equal to
the frequency of [nα]⊗ [nβ] in the subduced representation [λ]↓(Snα ⊗ Snβ ).

The outer product [nα]⊗ [nβ] can be resolved into irreducible representations of SN
as [7,9]

[nα]⊗ [nβ] = [nα + nβ] + [nα + nβ − 1, 1] + · · ·+ [nα,nβ], (18)

which implies that anαnβ = 1. As a consequence, we find that the normalization in
equation (12) becomes

〈Θk|Θk〉 =
fNS
N !

nα!nβ! =
2S + 1
nα + 1

. (19)

Thus, we obtain the character projected spin eigenfunctions normalized to unity as

Θk =

√
nα + 1
2S + 1

P̂kX̂ [λ]θ1. (20)

3. Reduced expression for the spin eigenfunctions

We observe from equation (1) that the spin eigenfunctions Θk in equation (20)
contain N ! terms. However, there exist only

Nα ≡
(
N
nα

)
=

N !
nα!nβ!

(21)

different simple spin products with the given values of nα and nβ . This implies that
a reduced form of Θk can be found.

Let SN be expressed in terms of left cosets of the direct product group Snα⊗Snβ ,

SN = Q1
(
Snα ⊗ Snβ

)
⊕Q2

(
Snα ⊗ Snβ

)
⊕ · · · ⊕QNα

(
Snα ⊗ Snβ

)
. (22)
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The sum over the symmetric group elements in X̂ [λ] can then be divided into two
summations as

X̂ [λ] =
fNS
N !

Nα∑
i=1

( ∑
P∈Snα⊗Snβ

X [λ](QiP )Q̂iP̂

)
. (23)

Utilizing equations (11) and (23) we are able to rewrite the spin eigenfunction Θk as

Θk =

√
nα + 1
2S + 1

fNS
N !

Nα∑
i=1

( ∑
P∈Snα⊗Snβ

X [λ](QiP )

)
P̂kQ̂iθ1. (24)

The set of primitive spin functions {Q̂iθ1: i = 1, 2, . . . ,Nα} is complete, so that it
must remain unaltered under the action of the standard Young tableau permutation, P̂k:

P̂k
{
Q̂iθ1

}
=
{
Q̂iθ1

}
. (25)

The individual spin products, however, are permuted according to P̂k. An alternative
expression for Θk is therefore

Θk =

√
nα + 1
2S + 1

fNS
N !

Nα∑
i=1

( ∑
P∈Snα⊗Snβ

X [λ](P−1
k QiP

))
Q̂iθ1. (26)

The inner summation is actually just an integer, so let us define the constant bki as

bki =

√
nα + 1
2S + 1

fNS
N !

∑
P∈Snα⊗Snβ

X [λ](P−1
k QiP

)
, (27)

so that we have the following reduced form of Θk:

Θk =
Nα∑
i=1

bkiQ̂iθ1. (28)
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