Journa of Mathematical Chemistry 22 (1997) 249-254 249

Note

Normalization of projected spin eigenfunctions
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We find the normalization integral for projected spin eigenfunctions, defined by means of
character projection operators of the symmetric group. We also obtain a reduced expression
for these spin eigenfunctions.

1. Introduction and definitions

Compact expressions have recently been presented [4] for evaluating electronic
matrix elements between wavefunctions based on projected spin eigenfunctions. Pro-
jected spin eigenfunctions were first introduced by Lowdin [10] and have been de-
veloped further by various authors [13]. Such N-electron spin eigenfunctions of 52
and S, with quantum numbers S and M, respectively, are neither orthogonal nor
normalized, and one obstacle to their further use, including the formulation presented
in [4], is the lack of an explicit expression for the normalization integral. The main
purpose of the present note is to obtain such an expression.

For the high-spin case (M = S) Kramer [8] has shown that Lowdin’'s projection
operator [10] is equivalent to the character projection operator

- Y ~
X = o > x(P)P, (1)
! PESN

in which [A\] = [N/2+ S,N/2 — S] = [nqa,ng] labels an irreducible representation
of the symmetric group Sy. XM(P) is the character of the permutation P in the
representation, and (for any value of M) fZ is the dimension of the spin space for
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the given values of N and S:

B (25 + 1)N!
/s = (N/24+ S+ 1)Y(N/2 - S) @

The question of what set of primitive elgenfunctions of S, to start from, in order
to obtain a complete set of fé\’ N-electron spin eigenfunctions, was first addressed
by Lowdin [11]. He suggested that al simple spin products that can be associated
with a standard Young tableau lead to a complete linearly independent set, as was
subsequently proved by Gershgorn [6] and Pauncz [12]. Let the first primitive spin
function 61 be

01 = a(Da(?) - - - (na)B(na + 1) - B(na + np), ©)
which can be associated with the tableau
B 1 27 - [ o |
D= 71  at g ' “)

When the standard Young tableaux associated with spin eigenfunctions are ordered in
last letter sequence (see, for example, [15]), P is defined as the permutation operator
that converts the first tableau 73 into the kth tableau T}.:

P,Ty =Ty ©)

In the following, we call these permutations standard Young tableaux permutations. It
means that we can write the kth ssimple spin product as

0), = P01 (6)
A complete linearly independent set of projected spin eigenfunctions is therefore
O, = XNPo, = PN, k=12 . ©)

The character operator X commutes with any P, since it belongs to the centrum of
the group algebra [14].

2. Normalization of the spin eigenfunctions

In order to determine the normalization constant for the character projected spin
eigenfunctions we evaluate (©|©;) by inserting the expression in equation (7) and
moving all operators in the bra over to the ket

(©4]0%) = (02 (X (By) T B XMW, ). ®)
Utilizing that (X™N)T = XN and (B,)f = Pt we obtain

(©4]04) = (0] (X)%0,). ©)
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The character operator is idempotent, and so

N o~
(©410r) = 2 37 xI(P) (02| Poy). (10)
’ PESN

We note that the spin strings in the bra and ket must have matching « and /3 functions
in order for the integral to be non-zero. In the following, S,,, denotes the symmetric
group which permutes the numbers 1,2,...,n,, and S,, the group acting on the
numbers n, + 1,...,n, + ng. Application of a permutation from the direct product
group [7], Sn, ® Sy, to the first spin string ¢ in equation (3) leaves the spin string
unchanged:

POy =01, for P€S,, ®S,,. (12)
Accordingly, we get
ey =15 T At 12)
kIMk) — NI .
PESn,®Sn,

In order to evauate the sum over irreducible characters of [\] we look at the irreducible
representation [A] restricted to S, ® Sp,. The subduced representation [A][(Sy,, ®
Sns) Will in general be reducible. Let us express it as a sum over al irreducible
representations of S,,, ® Snys'

[)‘]J,('Sna ® Sng) = z au[ﬂ]v (13)
(1

where [1] is of the form [A\,] ® [Ag] and [A,] is an irreducible representation of S,,,
and [Ag] is an irreducible representation of S, (see, for example, [3]). When the
individual representations are irreducible, the product must be as well. The irreducible
product character X" can be expressed in terms of the individual characters:

xl (P) = X[Aa](Pa)X[Aﬁ](PIB)' (14)
where P, € S, P3 € Sy, and P = P, P3. The subduced character XM is therefore

Y, A= Y aw< > X“a](Pa)>

Pesna ®Sn5 [Aa] y[)\ﬁ] P, eSna

><< > XW](Pg)). (15)

PgESnﬁ
Let us multiply each term in the S,,, summation by X1"I(P,) = 1 so that we obtain

> abd@)xtred(P) = 85 nainal, (16)
Pa GSTLQ
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in which we have used the orthogonality of the irreducible characters of S, (see, for
example, [1]). Utilizing the same procedure for S, ;, we obtain
> AP = apnynalng!. (17)
PESna®Sng

In order to determine the coefficient ay,,,, We use the Frobenius reciprocity theo-
rem [2,5], which was originally expressed in terms of characters of representations,
although later formulations also concern representations. Since Sy is a group with an
irreducible representation [A] = [nq,ns] and Sy, ® Sy, is asubgroup of Sy with an
irreducible representation [n,] ® [ng], we have:

The frequency of [A] in the induced representation ([n.] ® [ns])TSn is equal to
the frequency of [n,] ® [ns] in the subduced representation [A][(S,.,, @ Sny)-

The outer product [n.] ® [ng] can be resolved into irreducible representations of Sy
as[7,9]

[na] @ [ng] = [na + np]l + [na + 15— L1 + - + [n4, 18], (18)

which implies that a;,,», = 1. As a consequence, we find that the normalization in
equation (12) becomes

N 25 +1
(0410) = %na!nﬁ! = . (19)

Ng +1s =
Op =/ 55T 1Pk2cwel. (20)

3. Reduced expression for the spin eigenfunctions

We observe from equation (1) that the spin eigenfunctions Oy, in equation (20)
contain N! terms. However, there exist only

|
N, = (N) . 21)
Ny na|n5|

different simple spin products with the given values of n, and ng. This implies that
areduced form of ©; can be found.
Let Sy be expressed in terms of |eft cosets of the direct product group S, ® S,

SN = Q1(Sn. ®Sn;) & Q2(Sn, @Sn;) & B QN (Sno @ Sny). (22
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The sum over the symmetric group elements in XM can then be divided into two
summations as

g fY Qe I
A= < >, Al (QiP)QiP) (23)
i=1 PeSy,, ®Snﬁ
Utilizing equations (11) and (23) we are able to rewrite the spin eigenfunction ©,, as
N,
ne + 1Y & < X ~
O = = > aPQip) ) PQibs. (24)
25+ 1N i=1 \ PESn,®Sny

The set of primitive spin functions {@ielz 1 =1,2,...,N,} is complete, so that it
must remain unaltered under the action of the standard Young tableau permutation, Py:

Bi{Qib1} = {Qib1}. (25

The individual spin products, however, are permuted according to P,. An dternative
expression for ©, is therefore

N,
O =\ 2571 > PGS%S XN (P QiP) ) Qif1. (26)
N nﬁ

i=1

The inner summation is actually just an integer, so let us define the constant by; as

Neg + 1 fé«v A _1
bri = SN abi(pteip), (27)
25 ™ 1 Nl PESna ®Snﬁ

so that we have the following reduced form of ©y:

No
O = > briQib1. (29)

1=1
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